Building A Glass House

© Copyright 2005, Paul Kislanko

One of the promises made in the latest round of knee-jerk "corrections" to the BCS selection process was increased transparency in the voting process. Most people took that to mean that the voters' ballots might be disclosed, and the only very minor step in that direction was the agreement that the final ballots would be public.

The debacle with the Associated Press poll in the final week of 2004, where AP voters who'd made their ballots public were pressured into "rigging the election" to the advantage (or detriment) of specific teams shows that that approach to "transparency" has its own problems.

Last year I suggested a better way to count poll votes that would provide transparency to the process and prevent any one particular voter from being able to affect the results. This approach (using a Bucklin vote-counting method instead of the Borda method) addresses the root cause of the problem that caused the Associated Press to pull out of the poll, even if all ballots were public.

But in the second week of the Harris Poll that replaced the AP, we learned that Harris Interactive has a ballot validation process that can change voters' ranks for a top 15 team, if the rank is too far from the mean rank. Last week I pointed out that the Bucklin approach would make this validation unnecessary.

But this week it occurred to me that even using the Borda method the process could be made transparent while preserving anonymous ballots in at least two ways. Even publishing the ballots wouldn't really help, since 114 voters times 25 ranks would pretty much be unintelligible to the typical fan.

The first approach to improving transparency would be to just publish the number of votes for a team at #2, #3, etc. the same way the number of first place votes is published today. The report would look something like this:

# Votes by Rank
14 Oct 2005 13:27:05 (US Central)

Team Conf #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25
1 Southern California P10 43 14 8 10 8 5 3 1                                  
2 Virginia Tech ACC 7 19 40 9 7 6 1 1   1       1                      
3 Penn State B10 29 16 4 7 7 6 4 4 1 2 2 3 2   1 1   1 1         1  
4 Texas B12 5 22 10 8 9 8 14 9 2 1       1   1     1       1    
5 Florida St ACC 6 6 8 15 12 8 11 4 6 2 6   2 1   2 1       1 1      
6 Miami-Florida ACC     3 12 12 16 10 11 13 5 1 4 3   1                    
7 Georgia SEC   2 7 13 9 9 13 13 9   2 1 3 1 1 1 1   3 2       2  
8 Alabama SEC 1 12 7 9 8 8 5 7 6 5 6 3 2 3 2 2 1   1 1   2 1    
9 Oregon P10       2 4 8 6 7 14 10 2 6 4 3 2   3 4 1 1 3 3 2 2 1
10 Minnesota B10       1   2 3 4 7 7 17 9 4 7 4 2 4 3 2 1 2 3 1   2
11 Florida SEC   1     1   1 2 9 11 15 8 9 4 3 1 5 4 1 1 1 2 3 2 3
12 LSU SEC     1 1 1 3 5 2 4 8 4 6 9 4 7 8 8 3 3 3 4 4 1    
13 UCLA P10           4 2 9 2 8 7 7 6 3 8 2 5 4 5 4 1 1 6 1 3
14 Texas Tech B12 1 1       1 2 4 3 6 3 12 6 5 4 1 6 5 5 2 2 3 2 2 6
15 Notre Dame Ind       1 4 3 4 1 5 5 4 3 4 3 3 6 7 5 7 6 1 2 1   7
16 Colorado B12                 2 1 1 6 6 5 12 11 7 7 8 3 4 3 4 2 4
17 Wisconsin B10     1 1     1       1 5 5 15 5 6 4 6 7 6 6 6 3 2 3
18 Ohio State B10           1   2 4 6 3 5 4 2 5 5 2 2 10 3 6 2 5 1 2
19 Boston College ACC                   1 1 2 2 4 6 6 8 7 3 8 5 1 7 8 9
20 Louisville BigE     1 1 1 2 1 2   3 4 2 2 5 3 3 3 3 4 7 10 2 6 5 8
21 Auburn SEC     2   6 2 1 1 2   2   4 2 5 2 3 6 3 5 3 9 3 4 3
22 Michigan St B10         1   3 2 1 1     2 5 4 6 3 5 3 5 4 5 3 3 1
23 Tennessee SEC       1       1   1 1   1 5 2 5 2 2 3 5 2 3 7 6 7
24 California P10           3   1         1 2 3 5 2 5 2 4 7 3 4 3 2
25 South Florida BigE                 1 3 1 3 1 4 2 3 4 4   4 4 3 2 5 2
26 West Virginia BigE                       2 1 2 1 2 2 5 4 3 6 3 3 6 5
27 Fresno St WAC               2 1 2 5 3   4 3 1 2 1 2 1 4 1 1 4  
28 Georgia Tech ACC       1 1             1   1     3 2 4   7 5 7 3 2
29 Arizona St P1                   1 1     1   1 1 1 1 2 6 5 4 5 4 4
30 TCU MW                 1   2 1   2 1 3 3 2 1 1 2 7 3 3 3
31 Michigan B1                       1   3   2 1 1 2 2 4 2 2 2 3 2
32 Nebraska B12                         2           2 3   3 3 2 1
33 Northwestern B1                         1         1         2 4 3 3
34 Iowa B1                               1     1   1   1 1 2  
35 Oklahoma B12           1                   1     1       1 2  
36 Connecticut BigE                               1 1         1   2  
37 North Carolina St ACC                                 1               3
37 Indiana B1                                           1 1   1 1
39 Boise St WAC                       1                   1     1
40 Baylor B12                                           1   1 1
41 Kansas St B12                                               2 1
42 Wyoming MW                   1                   1          
43 North Carolina ACC                                 1             1  
44 Bowling Green MAC                         1                        
45 Utah MW                               1                  
46 Vanderbilt SEC                                   1              
47 Oregon St P1                                           1        
48 Texas A&M B12                                           1      
49 Maryland ACC                                               1  
49 South Carolina SEC                                               1  
49 UTEP CUSA                                               1  
52 Colorado St MW                                                 1
52 Toledo MAC                                                 1
52 Clemson ACC                                                 1

Note that we'd no longer have to guess if 51 points meant three voters got together and voted a team 111 voters thought didn't belong in the top 25 as their #9 choice or 51 voters thought the team was 25th. (This is the basic problem with Borda that causes it to not be used in any election that actually matters.)

This is still a lot more information than fans other than myself and Jerry Palm might want to have, but there's another way to accomplish the same objective.

If you must use Borda, Use it correctly!

The polls all use a modification of Borda that assigns 25 points to each vote for #1, 24 for each vote for #2, and so on down to 1 point for each vote for #25. This would be correct if there were 26 teams, and every voter ranked every team.

The definition of Borda says "for each rank assign the value for a rank as the number of teams it is ranked higher than." In other words, with 119 teams, a vote for #1 should count 118, and a vote for 119th should count 0.

We can then represent the ballots shown above by just this table:

Ballot Analysis
14 Oct 2005 13:34:01 (US Central)

Avg
Rank
Borda
Rank
Borda
Points
Majority Majority
Count
Team Conf #Ballots Best Median Worst
1 1 10714 2 57 Southern California P10 92 1 2 8
2 2 10637 3 66 Virginia Tech ACC 92 1 3 14
3 3 10511 3 49 Penn State B10 92 1 3 24
4 4 10474 5 54 Texas B12 92 1 5 23
5 5 10357 5 47 Florida St ACC 92 1 5 22
6 8 10178 7 53 Miami-Florida ACC 91 3 7  
8 7 10216 7 53 Georgia SEC 92 2 7 24
7 6 10228 7 50 Alabama SEC 92 1 7 23
9 9 9444 10 51 Oregon P10 88 4 10  
12 13 9015 12 50 Minnesota B10 85 4 12  
11 12 9184 12 48 Florida SEC 87 2 12  
10 10 9370 14 48 LSU SEC 89 3 14  
13 11 9219 14 48 UCLA P10 88 6 14  
14 16 8536 15 48 Texas Tech B12 82 1 15  
15 15 8545 17 53 Notre Dame Ind 82 4 16  
16 14 8772 17 51 Colorado B12 86 9 17  
17 17 8467 18 50 Wisconsin B10 83 3 18  
18 20 7205 19 51 Ohio State B10 70 6 19  
21 19 7785 20 48 Boston College ACC 78 10 20  
19 18 7915 20 47 Louisville BigE 78 3 20  
20 21 6985 21 49 Auburn SEC 68 3 20  
22 22 5812 22 50 Michigan St B10 57 5 22  
23 23 5385 24 47 Tennessee SEC 54 4 24  
25 24 4732 25 47 California P10 47 6 25  
28 25 4655     South Florida BigE 46 9 25  
24 26 4453     West Virginia BigE 45 12    
26 27 3815     Fresno St WAC 37 8    
27 28 3665     Georgia Tech ACC 37 4    
29 29 3643     Arizona St P10 37 9    
31 30 3493     TCU MW 35 9    
30 31 2692     Michigan B10 27 11    
32 32 1572     Nebraska B12 16 13    
33 33 1354     Northwestern B10 14 12    
36 34 687     Iowa B10 7 15    
35 35 602     Oklahoma B12 6 6    
43 36 492     Connecticut BigE 5 16    
34 37 384     North Carolina St ACC 4 17    
40 37 384     Indiana B10 4 21    
48 39 298     Boise St WAC 3 12    
44 40 286     Baylor B12 3 22    
37 41 284     Kansas St B12 3 24    
42 42 208     Wyoming MW 2 10    
49 43 197     North Carolina ACC 2 17    
55 44 106     Bowling Green MAC 1 13    
60 45 103     Utah MW 1 16    
61 46 101     Vanderbilt SEC 1 18    
50 47 98     Oregon St P10 1 21    
38 48 97     Texas A&M B12 1 22    
41 49 95     Maryland ACC 1 24    
45 49 95     South Carolina SEC 1 24    
52 49 95     UTEP CUSA 1 24    
39 52 94     Colorado St MW 1 25    
46 52 94     Toledo MAC 1 25    
47 52 94     Clemson ACC 1 25    

I've ordered the top 25 by Bucklin, and the "others receiving votes" by pure Borda. Notice that every team in the final top 25 is listed somewhere in a majority of voters' top 25. There may actually be fewer than 25 teams ranked on a majority of ballots, but no team that is ranked by a majority of voters in the top 25 can be left out because of a team that is ranked "too highly" by a minority of voters.

What contributes to the transparency without seeing the original ballots, or even the count of ballots is just using the 118, 117,... 94 assignment for #1, 2, ... 25. Since the fewest points than can come from any ballot for a team is 94, we know that any team with a score between 94 and 187 was listed on only one ballot and know exactly where on that ballot. A team with a score between 187 and 281 could not have been on more than two ballots, and so on.


The ballots used to demonstrate this example are actually 89 different computer rankings, as compiled by Kenneth Massey at College Football Ranking Comparisons. Since for the most part these do rank all 119 teams, the example was constructed by truncating each computer's "ballot" at 25.

The vote totals (and therefore pure Borda count) do not exactly balance, because some of the "voters' ballots" have ties, correctly expressed as consecutive ranks such as 3,3,3,6. My examples incorrectly calculate the Borda scores as 116,116,116,113, when in fact it should be 114,114,114,113, since the number of teams ranked below a given team should not include teams tied with it. I chose not to address that for the purposes of the demonstration.